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A three-dimensional linearly elastic (viscoelastic) domain (finite or infinite) containing a physically non-linear inclusion of arbitrary 
shape is considered. The possibility of creating a prescribed uniform stress-strain state in the inclusion by a suitable choice of 
loads on the outer boundary of the domain is considered. A solution is constructed in closed form. Some examples are considered, 
including, in particular, the case of an ellipsoidal inclusion with the property of non-linear creep. © 2005 Elsevier Ltd. All rights 
reserved. 

Two-dimensional problems for finite elastic [1] and viscoelastic [2] domains containing a physically non- 
linear inclusion (PNI) of arbitrary shape have been investigated, in which the application of suitable 
external loads creates a given uniform stress-strain state (SSS) in the inclusion. The solutions constructed 
in [1, 2] contained, apart from quantities characterizing the SSS in the inclusion and the properties of 
the basic medium, only a representing function associated with the boundary of the inclusion. In this 
paper results obtained in [3] will be used to solve similar problems (moreover, in closed form) in three 
dimensions. Special attention will be given to an ellipsoidal inclusion (EPNI), when the solution can 
be extended to infinitely distant points, the SSS at which will also be uniform. In particular, some 
problems of the deformation and fracture of eltipsoidal inclusions under conditions of creep will be 
considered. 

1. T H E  S T R E S S - S T R A I N  S T A T E  O F  A T H R E E - D I M E N S I O N A L  
D O M A I N  CONTAINING A PHYSICALLY N O N - L I N E A R  I N C L U S I O N  

WITH A GIVEN S T R E S S - S T R A I N  STATE 

Consider an elastic (or viscoelastic) domain a~ of space with a physically non-linear inclusion v*. The 
outer and inner boundaries of the domain x) are piecewise-smooth surfaces S and S* (the latter separates 

from ~*). 
Hooke's law holds in the basic medium 

Ekl = aklmn(Yrnn , IJkl = bklmnemn, k, l = 1, 2, 3 (1.1) 

where ekl, (Ykl, aklmn and bklmn a r e  the components of the strain, stress, elastic compliance, and elastic 
moduli tensors; repeated indices indicate summation from i to 3. The system of coordinates OXlX2X3 is 
chosen so that (0, 0, 0) ~ v*. If the quantities aklmn and bklmn (k, l, m ,  n = 1, 2, 3) are understood as 
the corresponding Volterra operators [2], then equalities (1.1) will be the constitutive equations for a 
linear viscoelastic medium. 

For the inclusion v* we have [1, 2] 
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£kl Fkl(Omn), ~kl = Gkl(gmn)' k, I, m, n = 1, 2, 3 (1.2) 

where Fkl and G~I are the components of mutually inverse non-linear tensor operators. 
The formulation of the main problem is analogous to that of the problems considered in [1, 2]: what 

displacements uk0 must be communicated to the boundary S (or loadspk0 applied to S) so as to create 
in the inclusion t)* the required uniform (i.e. independent of the coordinates xk) stress-strain state (SSS), 
characterized by stresses (Y~l (Y~t(t) and strains a~z * = = ~kl(t) (k, 1 = 1, 2, 3; t is the time or a loading 
parameter) satisfying Eqs (1.2)? At the initial time t = 0 the domain ag* u ~ was in an unstrained state. 
At the boundary S* the fields of loadsp~ = rYklnl (where nl are the components of a unit vector normal 
to S) and displacements Uk (k = 1, 2, 3) are continuous. The problem is geometrically linear. 

Since the strains e~t and v* are independent of the coordinates, the displacement vector u* will be 
a linear function ofxk, that is, if it is assumed that u* = 0 at the point (0, 0, 0) E v*, then 

U k = (O)kl "1- ekl)Xl (k = 1, 2, 3) (1.3) 

where 0)~l are the components of an antisymmetric tensor defining a uniform rotation vector in a)*, which 
is also assumed to be given (for example, c0~l = 0; k, l = 1, 2, 3). 

In [3] an elastic space was considered with a physically non-linear inclusion subjected at infinity to 
the action of external forces, corresponding to which in the uniform elastic medium (that is, when there 
is no inclusion) there were fields of stresses ry~t = r~z(r) and displacements u~ = u~ (r); the following 
relations were obtained 

u~(r) = u~(r) + Fk(r ), Fk(r ) = I dPPq(~)Ukp, q(r- ~)dD(~) 
I ) *  

k = 1, 2, 3; r = (xl, x2, x3), 0_< Irl < oo, { = (~1' {2' ~3) e I)* (1.4) 

I~pq = I~pq-bpqmnEmn ' 2gmn =Um, n+Un, m 

where Ukp are the components of Green's tensor and the subscript q after a comma denotes a derivative 
with respect to Xq; the other quantities are defined by formulae (1.1)-(1.3). (Note that the minus sign 
in front of the integral in formula (1.4) in [3] is an error, as is obvious from the formulae presented 
there on p. 13.) In what follows we shall assume that the components of the displacements, stresses, 
and strains occurring in (1.4) also depend on t. 

In the direct problem, that is, given the functions uff = uff(r), Eqs (1.4) are non-linear integral 
equations for u~ = uk(r), 0 < I rl < ~,. It has been shown [3] that the solution of these equations (in 
case it exists), that is, the vector of displacements and the field of stresses corresponding to it by 
Eqs (1.1) and (1.2), satisfy the previously mentioned continuity conditions at the surface S* and that 
the equilibrium conditions are satisfied throughout the space. 

In the case considered here, that of the inverse problem, where, according to Eqs (1.3), the given 
quantities are u~ - u~(r), r e a~*, while the quantities q~ occurring in formulae (1 4) are independent - -  p . " . 

of ~, one can determine the required functions ukO = uk0~r~), rs e S, that IS, the vector of displacements 
on the outer boundary of the domain a), from relations (1.4). Indeed, by (1.4), we obtain the following 
equalities for the components u~ in the physically non-linear inclusion 

uk(r) = u~ ' ( r ) -Fk( r ) ,  k = 1,2,3;  r e  1)* (1.5) 

The functions u~ (r) are analytic in the domain u* (at least, in the case of an isotropic elastic domain 
a), when Ukp are the components of the Kelvin-Somigliana tensor and are expressed in terms of known 
harmonic and biharmonic potentials [4]). They may therefore be continued into the domain a~ and beyond 
(if a9 is finite), i.e. beyond the boundary S. In the case when the domain v is infinite and u~ are 
polynomials of degree n < ~ ,  such a continuation is also possible, that is, the field of the stress tensor 
at infinity is a polynomial of degree n - 1. For example, in the case of an ellipsoidal physically non- 
linear inclusion n = 1, that is, the stresses ry~t are finite as I rl ~ oo [3]. 

For known functions u~ = u~(r), 0 < Irl < 0% we find from relations (1.4) that Uk = Uk(r), r e v 
and uk0 = UkO(rs) (orpk0 = pk0(rs)), rs e S (k = 1, 2, 3). 

Note that, as in the two-dimensional problem [1, 2], the SSS in ~ is uniquely defined by the geometry 
of the inclusion a~*, the quantities ~Y~t and e~l, and also the elastic (viscoelastic) characteristics of aJ, while 
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its outer boundary S does not affect the SSS. The loads Pk0 on the boundary S are determined by its 
shape and the already determined SSS in v. 

The solution of the inverse problem considered above is unique, that is, for a known field u~ in the 
domain x~*, the SSS in the domain x) and the corresponding displacements and loads on the boundary 
S are uniquely defined [1, 2]. The converse is also true: Given Uk orpk on the boundary S and certain 
restrictions imposed on relations (1.2) (which reduce to the assumption that the process of deformation 
of the material of the inclusion is stable [1, 2]), the SSS in the domain x)* u v is uniquely defined, that 
is, the previously found functions uk0 = u~0(rs) (orpg0 = p~0(r~)), r~ ~ S, determine a uniform SSS in 
the domain ,o*. The proof duplicates that of [1, 2], except that the two-dimensional integrals are replaced 
by the analogous three-dimensional ones. 

2. E X A M P L E S  

Let us consider the case of an ellipsoidal inclusion with semi-axes ak (k = 1, 2, 3), for which the functions 
Fk(r) in relations (1.4) are linear when t~pq = const [3, 4]. Therefore, in view of relations (1.3) and (1.5), 
uff = uff(r) will also be linear. Consequently, as already pointed out, as It[ --+ ~o the stresses cY7l will 
be finite. 

It is not hard to establish the relation between the SSS in the ellipsoidal inclusion and at infinity. 
Indeed, Eshelby, in his classical paper [4] for the case of an inclusion subject to a transformation 
accompanied brv a free uniform deformation e~'t, obtained relations of the type (1.4) for u~ = 0 and 
t ~  = ---b~mnEmn, from which we obtain the following relations between the free and constrained 
detormatmns: 

* = SklmnETn , 2Sklmn = -bpqmn I [Ukp q / ( r - { ) +  Ekl 
I )*  

+Ulp, qk ( r -~ ) ]d l ) (~ ) ,  k , l , m , n = l , 2 , 3 ;  r , ~ o *  
(2.1) 

The components Sktmn of Eshelby's tensor S [4] are independent of xk (k = 1, 2, 3). It then follows 
from relations (1.1)-(1.4) and (2.1) for the case of an ellipsoidal inclusion that 

u7 = ( c 4 + 4 ) x , ,  4 = 

Ekl = aklmn(Yran, E~/ = * *~ * * ~* (2.2) ~. ~ aklmn(Ymn ' O)kl ---- (.Okl + Hklmn(Emn - Emn ) 

2Hklmn = bpq mn I [UkP' k/(r-  ~) - U l p . q k ( r -  ~)]dl)(~) 
I ) *  

For an isotropic elastic medium x), the components of the tensors S and II in (2.1) and (2.2) are defined 
as follows [4] (where v is Poisson's ratio): 

2 2 
Skkkk = Qaklkk + RI  k, Skku = Qa l I k l  --  RI  k 

2 It -- Ik 
2Sktkt = 2Skltk = Q(a2 + at )lkt + R(Ik + It); I-[klkl = --I-Ikllk -- 8~ 

3 
Q = 8 7 c ( I ) - v  " - ' ' ' ' ' ~ '  R = - -  

1 - 2 v  = 2~ala2a31 2du du (2.3) 
8 ~ ( 1 - v ) ;  Ik - - '  Ikk=2~ala2a3I ,  2 - -  z 

o (ak + u)A o tak + U) A 

em 

3lkt = 2~ala2a3I 2 du . 
o (ak + u)(a~ + u)A' 

A 2 = + u)(a  + u)(a  + u) 

(k, l = 1, 2, 3, k ¢ l; there is no summation over k and l); the remaining components vanish: S k l m n  = 0 
and IIklmn = O. 

The quantities Ik, I~g and Igl are expressed in terms of elliptic integrals of the first and second kind 
and may be determined if any two of the Ik are known, as, for example, in the case of oblate and prolate 
spheroids, when Ik are elementary functions of al, aa and a3 and the following equalities hold: 
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i f a  1 = a 2 = a, a 3 = 8a, 8 < 1 

I l = 12 = 2n8(1 -82) -3 /2 [a rccosS-8 (1 - -82 )1 /2 ] ,  13 = 4 n - 2 I  1 

311 - 4982 4re - 311 
I l l  = 122 = 3112 = 113 = 123 - 

4a2( 1 - 82) ' 3a2( 1 - 52) 
(2.4) 

4g(  1 - 352) + 61152 

133 = 3a282(1 - 52) 

if a l  = a, a 2 = a3 = 8a, 8 < 1 

I 1 = 4rc-212 ,  12 = 13 2 g ( l _  ' - 3 /2 r - l t "  1 )1/2 1] : 1) ~ [ ~ - 1  -arch~ 

4g(3  - 5 2) - 612 4n - 31252 312 - 4n 
II1 = 3a2(1 52 ) , 122 = 133 = 3123 = I12 = I13 - - 4a282( 1 - 52) ' 3a2( 1 - 52) 

(2.5) 

We also note  that  in the case of  an elliptical cylinder, when  a3 ~ ~ and the following equalities 
hold [4] 

4~a2 4~a l  4~ 
11 = ~ ,  I 2 - - - ,  13 = 0, 112 - 

a I + a 2 al  + a 2 3(a  1 + a2) 2 

4g 
lkk = 3a~ 112, k = 1,2;  Ik3 = O, k = 1 ,2 ,3  

relat ions (2.2) are identical with those  ob ta ined  previously in two dimensions  ([1], fo rmulae  (3.4) for  
= 3 - 4v, cor responding to two-dimensional  deformat ion) .  
As examples  of  the appl icat ion of  relat ions (2.2)-(2.5), we will briefly list a few prob lems  for  the case 

of  an elastic or  viscoelastic m e d i u m  with an ellipsoidal inclusion, whose  deformat ions  are combinat ions  
of  elastic deformat ions  and creep deformat ions  eft,  that  is, the consti tutive equat ions  (1.2) have the 
fo rm [21 

, , , , c  . , c  -m , 
= to) ~s /~kl ,  k , l =  2,3 Ekl aklmn(~mn + Ekl , Emn = B l S n ( 1 -  1, 

(2.6) 
63 = B2sP(1 _ to ) -m 

where  s = s(o*kt) is a h o m o g e n e o u s  convex funct ion of  the first degree,  to(0 < to < 1) is a damage  
pa ramete r ,  and B1, B2, m, n a n d p  are positive constants.  

T h e  inverse p rob lems  are analogous to those considered in [2] for  a finite two-dimensional  domain  
with an ellipsoidal inclusion and are fo rmula ted  as follows. 

Problem 1. I t  is requi red  to choose stresses 

6~i = 6~( t ) ,  0 -< t _< t o (2.7) 

for  which the creep deformat ions  ef t  in the domain  a~* at t = to take prescr ibed values .c e~l** for the 
least value of  the damage  pa rame te r  to. The  durat ion to of  the process and the stresses in v* are bounded:  

O<t o<_t**, max s(t)<_s** 
O<t<t o 

where  t** and s** are given quantities.  

Problem 2. U n d e r  the same restrictions due to external  forces, it is required  to f racture  the domain  
v* at a t ime to -< t** at a m i n i m u m  level of  energy dissipated in creep.  
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Problem 3a and 3b. Find stresses (2.7) for which the fracture of the ellipsoidal inclusion occurs at 
* C  . the required deformations ekZ**. 

(a) at the least value to of the duration of the application of the external force; 
(b) at the least value of the dissipated energy. 
In all these problems it is assumed that co = 0 and e~[ = 0 (k, l = 1, 2, 3) for t < 0. 
In other words, it is required to create in the inclusion an optimal (in the appropriate sense) SSS, 

which will be uniform. Such optimal modes of deformation and fracture of an inclusion were studied, 
for each of the problems listed, in [2]. Given ~f~l and e~z satisfying system (2.6), the stresses ~ )  at infinity 
are determined from relations (2.2) and (2.3); in particular, for spheroidal physically non-linear inclusions 
they are determined from relations (2.2), (2.4) and (2.5). 

As before [2], Problems 1-3 may be formulated for the case of a finite elastic or viscoelastic domain 
with a physically non-linear inclusion of arbitrary shape. The appropriate optimal SSS in the inclusion 

must be uniform [2]. It is obtained by a suitable choice of the loads Pko = PkO(t) on the boundary S, as 
determined by formulae (1.4) and (1.5). 

3. S O M E  R E M A R K S  ON P R O B L E M  (u, p) 

As already pointed out [1], the inverse problem considered in Section i was reduced to the so-called 
Problem (u, p) of elasticity or viscoelasticity theory [5] for a doubly connected domain v, on whose 
inner boundary S* displacements u~ and loadspf~ are given; no conditions are prescribed on the outer 
boundary S. Indeed, in the inclusion v* we know the uniform fields 

~ * =  * 
f fk l ( t ) ,  I~t = E~l(t ), O~l = O~*(t) 

and so u~ will be determined on the boundary S* by expressions (1.3) with Xk ~ S*, whilep~ = ~klni* *, 
where nff are the components of the outward normal to S* (with respect to v). 

Conversely, sometimes the solution of Problem (u, p) for the domain v may be reduced to finding the 
vector u = u(r), r s v using formulae (1.4) and (1.5). As examples of that situation, consider the following: 

(a) on the boundary S* one has p~ = 0, u~ = aklXl, xk ~ S* (k = 1, 2, 3), where ~kl are constant 
quantities; 

(b) u~ = 0,p~ = ~kln~ on S*, 13kl = ~tk are constant quantities. 
These boundary conditions may be treated as follows. In case (a), we have a load-free cavity occupying 

the domain v* with displacements of the points of its boundary which are linear in xk; in case (b) we 
have a rigid (non-deformable) inclusion v* in a uniform stressed state. We may thus assume that the 
inclusion is an elastic medium, whose constitutive equations (1.2) have the following respective forms 

( a )  * * * 
= bklrnnEmn as bklmn ~ 0; 

( b )  * * * =- aklmn(Ymn as aklmn ~ O. 
Under  these assumptions, as is easily seen, 2e~1 = cckt + (xlk in case a and ~ l  = 13~t in case (b). 

Thus, relations (1.4) and (1.5) may be used with the components of the tensor • of (1.4) defined as 
follows: (a) q~kt = -bklmn~mn; (b) qbkt = 13kl. 
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